On Nevai's Characterization of Measures with Almost Everywhere Positive Derivative

X. LI AND E. B. SAFF*

Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, Florida 33620

Communicated by Paul Nevai

Received December 1, 1989

It is known that if $d\mu$ is a finite positive Borel measure on the unit circle $\hat{c} \Delta := \{z \in \mathbb{C} : |z| = 1\}$ with $\mu' > 0$ a.e. in $[0, 2\pi]$, then

$$\lim_{n \to \infty} \int_{0}^{2\pi} \left| \frac{|\varphi_{n}(z)|^{2}}{|\varphi_{n-1}(z)|^{2}} - 1 \right| d\theta = 0, \qquad z = e^{i\theta}$$
(*)

uniformly in $l \ge 0$, where $\{\varphi_n(z)\}_{n=0}^{\infty}$ is the set of orthonormal polynomials with respect to $d\mu$. Recently, Nevai proved that if (*) holds uniformly in $l \ge 0$, then $\mu' > 0$ a.e. in $[0, 2\pi]$. In this note we establish another characterization of such measures in terms of Turán-type inequalities and we utilize it to give an alternative proof of Nevai's result. \mathbb{C} 1990 Academic Press, Inc.

Let $d\mu$ be a finite positive Borel measure on the unit circle $\partial \Delta := \{z \in \mathbb{C} : |z| = 1\}$ with its support an infinite set. Let $\varphi_n(z) = \varphi_n(d\mu, z) := \kappa_n z^n + \cdots \in \mathscr{P}_n, \ \kappa_n > 0, \ n = 0, 1, 2, ...,$ be the *n*th orthonormal polynomial with respect to $d\mu$; that is,

$$\frac{1}{2\pi} \int_{\partial A} \varphi_m(z) \,\overline{\varphi_n(z)} \, d\mu = \delta_{m,n}, \qquad m, n = 0, 1, 2, \dots$$

Rahmanov proved (cf. [9, p. 106])

THEOREM A. If $\mu' > 0$ a.e. in $[0, 2\pi]$, then

$$\lim_{n \to \infty} \frac{z\varphi_n(z)}{\varphi_{n+1}(z)} = 1 \tag{1}$$

uniformly for $|z| \ge 1$.

* Research supported, in part, by the National Science Foundation under Grant DMS-881-4026. In [5] (see also [8]), Máté *et al.* gave a much simpler proof of Theorem A. In doing so, they established (cf. [5, Theorem 3, p. 64])

THEOREM B. If $\mu' > 0$ a.e. in $[0, 2\pi]$, then

$$\lim_{n \to \infty} \int_{0}^{2\pi} \left| \frac{|\varphi_n(z)|^2}{|\varphi_{n+1}(z)|^2} - 1 \right| \, d\theta = 0, \qquad z = e^{i\theta},\tag{2}$$

uniformly in $l \ge 0$.

On the one hand, Theorem A follows from Theorem B (cf. [5, Theorem 2, p. 64]). On the other hand, as noted in [5, Remark (a), p. 64], Theorem B follows from Theorem A except for the uniformity in *l*. In fact, recently Nevai (cf. [7, Theorem 1.1, p. 295]) proved that (2) implies $\mu' > 0$ a.e. in [0, 2π]. In this paper we establish another characterization of measures with positive derivative and we use it to give an alternative proof of the above mentioned result of Nevai.

In [4], the following inequality of Turán played an essential role.

THEOREM C (cf. [6, Corollary 7.5, p. 258]). If $\mu' > 0$ a.e. in $[0, 2\pi]$, then for every $\delta \in (0, 2\pi]$ there is an $\varepsilon > 0$ such that

$$\int_{E} |\varphi_{n}|^{2} d\mu \ge \varepsilon$$
(3)

holds for every $n \ge 0$ and every Borel set $E \subset \partial \Lambda$ with Lebesgue measure $|E| \ge \delta$.

We are concerned with the following question: Is $\mu' > 0$ a.e. in $[0, 2\pi]$ necessary for (3)? To answer this question, we prove the following refinement of Theorem C which characterizes measures with positive derivative in terms of Turán-type inequalities.

THEOREM 1. Let $d\mu$ be a finite positive Borel measure on $\partial \Delta$ with infinite support. Then $\mu' > 0$ a.e. in $[0, 2\pi]$ if and only if for every $\delta \in (0, 2\pi]$ and $\rho \in (0, 1)$, there exists an integer $N(\delta, \rho)$ such that

$$\int_{E} |\varphi_{n}|^{2} d\mu \ge \rho \delta, \qquad n \ge N(\delta, \rho), \tag{4}$$

for all Borel sets $E \subset \partial \Delta$ with $|E| \ge \delta$.

Proof. Let us first assume that $\mu' > 0$ a.e. in $[0, 2\pi]$. Then by [6, Theorem 7.4, p. 257],

$$\lim_{n \to \infty} \int_E |\varphi_n|^2 \, d\mu = |E|$$

uniformly for all Borel sets $E \subset \partial A$. Thus, given $\delta \in (0, 2\pi]$ and $\rho \in (0, 1)$, we can find an integer $N(\delta, \rho)$ such that

$$\left|\int_{E} |\varphi_{n}|^{2} d\mu - |E|\right| < (1-\rho)\delta, \qquad n \ge N(\delta, \rho),$$

uniformly for all Borel sets $E \subset \partial A$. Hence, when $n \ge N(\delta, \rho)$,

$$\int_{E} |\varphi_{n}|^{2} d\mu \ge |E| - (1 - \rho)\delta \ge \rho\delta$$

for all Borel sets $E \subset \hat{c} \Delta$ with $|E| \ge \delta$, which establishes (4).

Now assume that (4) holds. From the Lebesgue decomposition (cf. [10, p. 21])

$$d\mu = \mu' d\theta + d\mu_s,$$

where $d\mu_s \perp d\theta$. Assume that $d\mu_s$ is concentrated on a Borel set A. Then

|A| = 0.

Given $\varepsilon > 0$, take $\delta = 2\pi$ and $\rho \in (0, 1)$ such that $2\pi - \rho \delta = 2\pi (1 - \rho) < \varepsilon$. Then, for $n \ge N(2\pi, \rho)$, we get from (4) with $E = A^c$

$$\int_{\mathcal{A}} |\varphi_n|^2 d\mu = \int_0^{2\pi} |\varphi_n|^2 d\mu - \int_{\mathcal{A}^c} |\varphi_n|^2 d\mu \leq 2\pi - \rho \delta < \varepsilon.$$

Note that

$$\int_{0}^{2\pi} |\varphi_{n}|^{2} d\mu_{s} = \int_{A} |\varphi_{n}|^{2} d\mu_{s} = \int_{A} |\varphi_{n}|^{2} d\mu_{s},$$

and so

$$\int_0^{2\pi} |\varphi_n|^2 \, d\mu_s < \varepsilon$$

when $n \ge N(2\pi, \rho)$. Hence,

$$\lim_{n \to \infty} \int_0^{2\pi} |\varphi_n|^2 \, d\mu_s = 0.$$
 (5)

Now set

$$B := \{ \theta \in [0, 2\pi] : \mu'(\theta) = 0 \}.$$

If $|B| =: \delta_0 > 0$, then for $n \ge N(\delta_0, \frac{1}{2})$, we have from (4)

$$\frac{1}{2}\delta_0 \leqslant \int_B |\varphi_n|^2 \, d\mu = \int_B |\varphi_n|^2 \, d\mu_s \leqslant \int_0^{2\pi} |\varphi_n|^2 \, d\mu_s,$$

which contradicts (5). Therefore |B| = 0, i.e., $\mu' > 0$ a.e. in $[0, 2\pi]$.

Now we state and prove Nevai's result (cf. [7, Theorem 1.1, p. 295]).

THEOREM 2. Let $d\mu$ be a finite positive Borel measure on $\partial \Delta$ with infinite support. Then $\mu' > 0$ a.e. in $[0, 2\pi]$ if and only if (2) holds uniformly in $l \ge 0$.

In the proof of Theorem 2 we make use of the following lemma in [6, Lemma 4.2, p. 248]. It is a consequence of [2, Theorem 5.2.2, p. 198] (also see [1, formula (1.20), p. 7]).

LEMMA 3. For any $f \in C(\partial \Delta)$,

$$\lim_{n\to\infty}\int_0^{2\pi}\frac{f(z)}{|\varphi_n(z)|^2}\,d\theta=\int_0^{2\pi}f(z)\,d\mu,\qquad z=e^{i\theta}.$$

Proof of Theorem 2. In view of Theorem B, we only need show that (2) implies $\mu' > 0$ a.e. in $[0, 2\pi]$. To do so, it suffices, from Theorem 1 to show that (2) implies (4).

Assume that (2) holds. Let $\delta \in (0, 2\pi]$ and $\rho \in (0, 1)$ be given. We will proceed in three steps.

Step I. We first show that (4) holds uniformly for every set E which is a finite union of open intervals.

Assume that

$$E = \bigcup_{i=1}^{m} (\alpha_i, \beta_i) \subset \partial \Delta, \qquad (\alpha_i, \beta_i) \cap (\alpha_j, \beta_j) = \emptyset, \qquad i \neq j, \tag{6}$$

and $|E| \ge \delta$.

It is easy to see that there exists an $f_{E,\rho} \in C(\partial \Delta)$ and $E_1 := \bigcup_{i=1}^{m} (\alpha'_i, \beta'_i) \subset E$ such that

$$\chi_{E_1}(z) \leqslant f_{E,\rho}(z) \leqslant \chi_E(z), \qquad z \in \partial \Delta$$

(where χ_K denotes the characteristic function of the set $K \subset \mathbb{C}$), and

$$|E_1| = \rho^{1/2} |E|.$$

By (2), we can find an integer $M(\delta, \rho)$ such that, for $n \ge M(\delta, \rho)$,

$$\int_{0}^{2\pi} f_{E,\rho}(z) \left| \frac{|\varphi_{n}(z)|^{2}}{|\varphi_{n+1}(z)|^{2}} - 1 \right| d\theta \leq \int_{0}^{2\pi} \left| \frac{|\varphi_{n}|^{2}}{|\varphi_{n+1}|^{2}} - 1 \right| d\theta < (\rho^{1/2} - \rho)\delta$$

uniformly in $l \ge 0$ and E is of the form given in (6). Thus, for $n \ge M(\delta, \rho)$,

$$\int_{0}^{2\pi} f_{E,\rho} \frac{|\varphi_{n}|^{2}}{|\varphi_{n+\ell}|^{2}} d\theta \ge \int_{0}^{2\pi} f_{E,\rho} d\theta - (\rho^{1/2} - \rho) \delta$$
$$\ge \rho^{1/2} \int_{0}^{2\pi} f_{E,\rho} d\theta \ge \rho^{1/2} \int_{E'} d\theta = \rho |E|$$

uniformly in $l \ge 0$ and E of the form given in (6) with $|E| \ge \delta$. From Lemma 3, by letting $l \to \infty$, we get

$$\int_0^{2\pi} f_{E,\rho} |\varphi_n|^2 d\mu \ge \rho |E|, \qquad n \ge M(\delta, \rho).$$

Hence,

$$\int_{E} |\varphi_{n}|^{2} d\mu \geq \int_{0}^{2\pi} f_{E,\rho} |\varphi_{n}|^{2} d\mu \geq \rho |E|, \qquad n \geq M(\delta,\rho),$$

uniformly for E of the form given in (6) with $|E| \ge \delta$.

Step II. Next we show that (4) holds uniformly for every open subset E of $\partial \Delta$ with $|E| \ge \delta$.

We can write such an open set as

$$E = \bigcup_{i=1}^{\infty} (\alpha_i, \beta_i), \qquad (\alpha_i, \beta_i) \cap (\alpha_j, \beta_j) = \emptyset, \qquad i \neq j,$$

and

$$|E| = \sum_{i=1}^{\infty} (\beta_i - \alpha_i) \ge \delta.$$

Let *m* be so large that

$$\sum_{i=1}^{m} (\beta_i - \alpha_i) \geq \rho^{1/2} \delta .$$

LI AND SAFF

Then, when $n \ge M(\rho^{1/2}\delta, \rho^{1/2})$, where $M(\cdot, \cdot)$ is given by Step I, we have

$$\int_{E} |\varphi_{n}|^{2} d\mu \geq \int_{\bigcup_{i=1}^{m} (\alpha_{i}, \beta_{i})} |\varphi_{n}|^{2} d\mu \geq \rho^{1/2} \cdot \rho^{1/2} \delta = \rho \delta$$

uniformly for any open set $E \subset \partial \Delta$ with $|E| \ge \delta$.

Step III. We complete the proof by showing that E can be any Borel set with $|E| \ge \delta$.

For such a set E we can find, by the outer-regularity of measure $|\varphi_n|^2 d\mu$, an open set $\mathcal{O}_{n,E} \supset E$ such that

$$\rho^{-1/2}\int_E |\varphi_n|^2 d\mu \ge \int_{\mathcal{C}_{n,E}} |\varphi_n|^2 d\mu.$$

Therefore, by Step II and the inequality $|\mathcal{O}_{n,E}| \ge \delta$, we have

$$\int_{E} |\varphi_{n}|^{2} d\mu \geq \rho^{1/2} \int_{\mathscr{C}_{n,E}} |\varphi_{n}|^{2} d\mu \geq \rho^{1/2} \cdot \rho^{1/2} \delta = \rho \delta,$$

when $n \ge M(\rho^{1/4}\delta, \rho^{1/4})$.

Finally, we remark that in [3], Lubinsky gave an explicit expression of a pure jump distribution (i.e., a discrete measure) dv on $\partial \Delta$ such that (cf. [3, formula (2.22), p. 523])

$$\sum_{j=2\cdot 3^{l-1}+1}^{2\cdot 3^{l}} |\Phi_{j}(0)|^{2} \leq C\left(\frac{\log l}{l}\right),$$

l large enough, where $\Phi_j(z) := (1/\kappa_j)\varphi_j(z)$ and C > 0 is a constant independent of *l*. Consequently,

$$\lim_{n\to\infty} |\Phi_n(0)|=0,$$

which is equivalent to (1) (cf., e.g., [5, formula (7), p. 66]). Summarizing these remarks, we can state

PROPOSITION 4. There exists a finite positive Borel measure that is a pure jump distribution but for which (1) holds.

References

- 1. G. FREUD, "Orthogonal Polynomials," Pergmon Press, New York, 1971.
- 2. YA. L. GEROMINUS, "Orthogonal Polynomials," Pergmon. New York, 1960.

- 3. D. S. LUBINSKY, Jump distributions on [-1, 1] whose orthogonal polynomials have leading coefficients with given asymptotic behavior, *Proc. Amer. Math. Soc.* 104 (1988). 516-524.
- 4. X. LI, E. B. SAFF, AND Z. SHA, Behavior of best L_p polynomial approximants on the unit interval and on the unit circle, J. Approx. Theory, to appear.
- 5. A. MÁTÉ, P. NEVAI, AND V. TOTIK, Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle, *Constr. Approx.* 1 (1985), 63-69.
- A. MÁTÉ, P. NEVAI, AND V. TOTIK, Strong and weak convergence of orthogonal polynomials, *Amer. J. Math.* 109 (1987), 239-282.
- 7. P. NEVAI, Characterization of measures associated with orthogonal polynomials on the unit circle, *Rocky Mountain J. Math.* **19** (1989), 293-302.
- 8. P. NEVAI, Weakly convergent sequences of functions and orthogonal polynomials, J. Approx. Theory 65 (1991), in press.
- 9. E. A. RAHMANOV, On the asymptotics of the ratio of orthogonal polynomials, II. Math. USSR-Sb. 46 (1983), 105-117.
- 10. W. RUDIN, "Real and Complex Analysis," 3rd ed., McGraw-Hill, New York, 1986.